Closing the Gap

Quantification and integration in biomedical research:
measurements and standards emerging
needed
overcooked
resisted

Keith R.Yamamoto yamamoto@medsch.ucsf.edu Accelerating Innovation in 21st Century Biology NIST UMBI Gaithersburg, Maryland October 21, 2008

Biological research—qualitative vs quantitative

One view:

- · Microbiology taxonomy
- · Cell Biology geography
- · Molecular Biology dark vs light gel bands

Then- the rise of the -OMICS!!

Another view:

Quantitative work in parallel, sometimes under the radar, now prominent, driving qualitative models

Quantitation has driven qualitative advances

- X-ray crystallography and NMR biological mechanisms, drug design/development
- Optical tweezers mechanisms of ATP-driven biological machines, energetics of biological motors
- Laser temperature jump and H-exchange NMR rapid kinetics of protein folding
- Tandem mass spec post-translational protein processing, epigenetics

Biological research—qualitative vs quantitative

One view:

- · Microbiology taxonomy
- · Cell Biology geography
- Molecular Biology dark or light gel bands
 Then- the rise of the -OMICS!!
- Quantitative work is driving qualitative models
- Increased resolution and scale of quantitation:
 - -- raise opportunity/challenge of integration
 - -- relationships enhance richness of information
 - -- increase need/value of measurement standards, benchmarks

Measurements and standards: different needs in different fields

- Genomics: rapid evolution of next generation technologies; FDA initiated, led MicroArray Quality Control project, built some reference materials; ~80-90% correspondence across platforms; need standard reference tools, analysis software, platform comparison benchmarks, network building tools
- Synthetic biology: using engineering principles to produce designed molecular actions/processes; need standard conditions for measuring activities of various components; need standard sets of parts with predictable relative activities under several conditions; don't overcook!
- Clinical research: need better data and standard databases (common coding conventions) for comparison and statistical analysis; need standard templated methods for collecting and portraying components of clinical care; need standard replacement for medical record notes
- Medical informatics/medical devices: need standards for device interoperability; companies are resistent; coordinate readouts to standard databases

Measurements and standards: Opportunities to extend integration

- Develop a "structural biology of the cell" that positions cell components and tracks them over time
- Count copies of each protein in cells to relate stochasticity and regulation
- Measure number, size and distribution of protein complexes and aggregates
- Measure and track properties of cancer cells within populations of normal cells
- Define multiple molecular phenotypes of cells to determine molecular networks that predict complex behaviors (disease, drug response)